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Playing Games and Making Decisions with Complex State

Spaces, Resource-Bounded Agents, and Unforeseen

Contingencies: Final Report

Grant No: AFOSR FA9550-08-1-0438
PI: Joseph Y. Halpern
Institution: Cornell University, Ithaca, NY 14853

Accomplishments

The goal of this project was to construct models for decision making and game theory that can
deal with complex state spaces, resource-bounded and cognitively-limited agents, and unfore-
seen contingencies in a robust way.

A number of advances were made on this front, outlined below. Much of the work reported
below is summarized in [4], which has been given as an invited talk at numerous conferences
and universities.1

Taking computation into account in game theory: Nash equilibrium does not take
computation into account. To see why this might be a problem, consider the following example,
taken from [29,38].

Example 1: You are given an n-bit number x. You can guess whether it is prime, or play safe
and say nothing. If you guess right, you get $10; if you guess wrong, you lose $10; if you play
safe, you get $1. There is only one Nash equilibrium in this 1-player game: giving the right
answer. But if n is large, this is almost certainly not what people will do. Even though primality
testing can be done in polynomial time, the costs for doing so (buying a larger computer, for
example, or writing an appropriate program), will probably not be worth it for most people.
The point here is that Nash equilibrium is not taking the cost of computing whether x is prime
into account.

There have been attempts in the game theory community to define solution concepts that
take computation into account; we provide one that greatly generalizes an earlier approach due
to Rubinstein. We consider Bayesian games, where each player has a type, which can be viewed
as the player’s private information. (In the example above, this would be the n-bit number.)

1A partial listing is given in the section on invited presentations below.
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The players choose a Turing machine (TM) that plays for them. The input to the TM is the
player’s type. We associate with each TM and input a complexity. We then allow a player’s
utility to depend on the profile of moves played (the outputs of each player’s TM), the profile of
types, and the profile of complexities. Thus, we can “charge” for a TM that takes a long time
to run, or uses a lot of space, on a given input. We can also charge for the complexity of the TM
(i.e., the number of states in the TM); this corresponds to how complicated a player’s program
is. Moreover, we can take a given TM to be free, but charge for all others. This amounts to
charging for searching for a different solution, and can be viewed as a way of capturing people’s
reluctance to switch from a strategy they are already comfortable with.

Formally, a Bayesian machine game G is a tuple ([m],M, T,Pr, C1, . . . , Cm, u1, . . . , um),
where

• [m] = {1, . . . ,m} is the set of players;

• M is the set of possible TMs;

• T ⊆ ({0, 1}∗)m+1 is the set of type profiles, where the (m + 1)st element in the profile
corresponds to nature’s type;

• Pr is a distribution on T ;

• Ci is a complexity function;

• ui : T × ({0, 1}∗)m × INm → IR is player i’s utility function. Intuitively, ui(~t,~a,~c) is the
utility of player i if ~t is the type profile, ~a is the action profile (where we identify i’s action
with Mi’s output), and ~c is the profile of machine complexities.

A strategy for player i is a function from Ti to ∆(Ai) (where, as usual, we denote by ∆(X)
the set of distributions on the set X). If σ is a strategy for player i, t ∈ Ti and a ∈ Ai, then
σ(t)(a) denotes the probability of action a according to the distribution on acts induced by
σ(t). Given a joint strategy ~σ, we can take u~σi to be the random variable on the type space
T defined by taking u~σi (~t) =

∑
~a∈A(σ1(t1)(a1) × . . . × σm(tm)(am))ui(~t,~a). Player i’s expected

utility if ~σ is played, denoted Ui(~σ), is then just EPr[u
~σ
i ] =

∑
~t∈T Pr(~t)u~σi (~t).

With these definitions in hand, we can define computational Nash equilibrium in the standard
way: a machine profile ~M ∈Mm is a Nash equilibrium if, for all players i and TMs M ′i ∈M,

UGi [(Mi, ~M−i)] ≥ UGi [(M ′i , ~M−i)].

Thus, for each player i, TM Mi is a best response to M−i. We can show that, in general, a
computational Nash equilibrium does not exist. This is because we do not allow mixing over
TMs. While TMs can randomize, we want to allow “charging” for such. If we do not charge for
randomization, then it can be shown that a computational Nash equilibrium exists, provided
that the utility functions and the type distribution are computable [29,38].

In [29,38], the framework is used to give simple explanations of phenomena such as cooper-
ation in repeated Prisoner’s Dilemma. It is also shown that there are deep connections between
computational games and cryptographic protocol security. In [41], the framework is applied to
decision theory. It is shown that the approach can be used to explain well-known phenomena
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such as the status quo bias (people are much more likely to stick with what they already have)
and belief polarization (after hearing the exactly same information, two people with possibly
different prior beliefs can end up with diametrically opposed conclusions). The framework is
also used to define two extensions of the standard notion of value of information: value of
computational information and value of conversation.

Awareness: In game theory, it is typically assumed that the game (i.e., the agents who are
playing, the moves that each one can make, and the payoffs at the leaves) is common knowledge:
all the agents know them, they know they know, and so on. But this assumption of common
knowledge is not reasonable in general. In large auctions on the internet, players may certainly
not know how many other players there are in the game, let alone who they are. There has
been a great deal of work on awareness in the AI and game theory literatures, going back
to the original paper written by Fagin and Halpern (Belief, awareness, and limited reasoning,
Artificial Intelligence 34, 1988, pp. 39–76). None of the earlier work dealt with knowledge of
lack of awareness (indeed, some of the approaches used in game theory are provably incapable
of dealing with it). This is particularly important if we interpret lack of awareness as stemming
from lack of computational power. An agent might well know that another might have more
computational abilities than he does, and so know things that he is not aware of (because he
cannot compute them). Rêgo and I described and provided a complete exiomation of a logic
that could capture knowledge of lack of awareness [27], using quantification over propositions.
The idea was that you could say “there is something I am not aware of, although I don’t know
what it is”.

Unfortunately, the logic has a significant problem: it is impossible for an agent to be uncer-
tain about whether he is aware of all formulas. This problem is corrected in [28]. The solution
involves considering models where there are different languages associated with each world;
thus, the agent has uncertainty about what the laguage is. This approach allows us to unify
and extend much of the earlier work on awareness.

Regret minimization: Perhaps the most common solution concept considered in game the-
ory is Nash equilibrium. While many other solution concepts have been considered in the
literature, there are a number of well-known games where none of them seems appropriate.

Example 2: Consider the well-known Traveler’s Dilemma (K. Basu, The traveler’s dilemma:
paradoxes of rationality in game theory, American Economic Review 84:2, 1994, pp. 391–395):
Suppose that two travelers have identical luggage, for which they both paid the same price.
Their luggage is damaged (in an identical way) by an airline. The airline offers to recompense
them for their luggage. They may ask for any dollar amount between $2 and $100. There is
only one catch. If they ask for the same amount, then that is what they will both receive.
However, if they ask for different amounts—say one asks for $m and the other for $m′, with
m < m′—then whoever asks for $m (the lower amount) will get $(m + 2), while the other
traveler will get $(m− 2).

It seems at first blush that both travelers should ask for $100, the maximum amount, for
then they will both get that. However, one of them might then realize that he is actually better
off asking for $99 if the other traveler asks for $100, since he then gets $101. In fact, $99 weakly
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dominates $100, in that no matter what Traveler 1 asks for, Traveler 2 is always at least as
well off asking for $99 than $100, and in one case (if Traveler 2 asks for $100) Traveler 1 is
strictly better off asking for $99. Thus, it seems we can eliminate 100 as an amount to ask
for. However, if we eliminate 100, a similar argument shows that 98 weakly dominates 99. And
once we eliminate 99, then 97 weakly dominates 98. Continuing this argument, both travelers
end up asking for $2! In fact, it is easy to see that (2,2) is the only Nash equilibrium. With
any other pair of requests, at least one of the travelers would want to change his request if he
knew what the other traveler was asking. Nevertheless, in experiments, it has been shown that
people typically ask for amounts in the high 90’s; very few people ask for 2.

Pass and I [28] introduce a new solution concept, iterated regret minimization, which has the
same qualitative behavior as that observed in the experiments, not just in Traveler’s Dilemma,
but in many other games that have proved problematic for Nash equilibrium, including the
Centipede Game, Nash bargaining, and Bertrand competition. As the name suggests, iterated
regret minimization involves the iterated deletion of strategies that do not minimize regret. It is
a solution concept that leads to quite different predictions than Nash equilibrium, while being
grounded on regret, a decision rule that has a long history in decision theory, and has a great
deal of support from the psychology literature.

Roughly speaking, the idea of regret in decision theory is that an agent chooses an action
a that minimizes regret across states, where the regret of action a in a state s is the difference
between the agent’s utility when he performs a in a state s and when he performs the act that
gives the highest utility in state s. To apply regret in a strategic-form game, we take the states
to be the other players’ strategy choices. Iterated regret minimization takes this idea one step
further: we see what inferences we can draw starting with minimal beliefs about the other
players’ strategies, using only the fact that the other players are regret minimizer.

Personnel Supported

• Joseph Y. Halpern (PI)

• Adam Bjorndahl (Ph.D. student)

• Samantha (Yinyee) Leung (Ph.D. student)

• Vasumathi Raman (Ph.D. student)

• Nan Rong (Ph.D. student)

• Dongcai Shen (Ph.D. student)

New discoveries, inventions or patent disclosures

• D. J. Martin, J. Y. Halpern, and J. Gehrke, System and Method for Scalable Sponsored
Auctions, patent application filed August, 2008.

4



Selected Invited Presentations
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– MICRAC Workshop on Causality in AI and Cognitive Psychoology Toulouse, France
(June 2009) (invited talk)
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• Milner Lecturer, University of Edinburgh, 2000.

• Awarded 1997 Gödel Prize for outstanding paper in the area of theoretical computer
science for “Knowledge and common knowledge in a distributed environment”.

• Fellow of the American Association of Artificial Intelligence, 1993.

• “An analysis of first-order logics of probability” given the Publisher’s Prize as best paper
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